If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-14t+3=0
a = 2; b = -14; c = +3;
Δ = b2-4ac
Δ = -142-4·2·3
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{43}}{2*2}=\frac{14-2\sqrt{43}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{43}}{2*2}=\frac{14+2\sqrt{43}}{4} $
| 3x/4+3x-4=22 | | 7-8s=-5 | | -2-5(6n+8)=168 | | 3x/1+3x-4=22 | | 6(x-1)/12=2(x+4)/9 | | -7(-3-7x)=-224 | | -7(-3-7x)=-225 | | -7-3m=11 | | x/4-(5/4x+2/1)=3/2(6x/1-4/1) | | 2/x+5(2+4)=6-5+4 | | 14=4÷x | | 0.1x+4.4=1.2x | | -136=8(4p+3) | | 8=(3w/2)-12+8 | | 4-6m=2m-36 | | 40x^2-18x-7=0 | | 4x+4(-4x+8)=104 | | 4(5+4p)=116 | | -16x+54=0 | | x=4.8+-0.2/5 | | 1-5(1+3a)=101 | | 2x=8-4+6 | | 3x-3(7x-8)=96 | | (x-6)(x-18)=0 | | (2x+2)=8 | | 12h-2h-6=14 | | (2x)+1=11 | | 4+2(6v+1)=102 | | 4(k-14.1)-4=8.4 | | 17m+18=16m | | -5(5b+3)=-140 | | 9d+15d+10=-14 |